References

[MRG02]

Cameron C. McIntyre, Andrew G. Richardson, and Warren M. Grill. Modeling the excitability of mammalian nerve fibers: influence of afterpotentials on the recovery cycle. Journal of Neurophysiology, 87(2):995–1006, February 2002. URL: https://doi.org/10.1152/jn.00353.2001, doi:10.1152/jn.00353.2001.

[MCGP21]

Eric D. Musselman, Jake E. Cariello, Warren M. Grill, and Nicole A. Pelot. Ascent (automated simulations to characterize electrical nerve thresholds): a pipeline for sample-specific computational modeling of electrical stimulation of peripheral nerves. PLOS Computational Biology, 17(9):e1009285, September 2021. URL: http://dx.doi.org/10.1371/journal.pcbi.1009285, doi:10.1371/journal.pcbi.1009285.

[PBG17]

N A Pelot, C E Behrend, and W M Grill. Modeling the response of small myelinated axons in a compound nerve to kilohertz frequency signals. Journal of Neural Engineering, 14(4):046022, June 2017. URL: https://doi.org/10.1088/1741-2552/aa6a5f, doi:10.1088/1741-2552/aa6a5f.

[PCT+21]

Nicole A. Pelot, David C. Catherall, Brandon J. Thio, Nathan D. Titus, Edward D. Liang, Craig S. Henriquez, and Warren M. Grill. Excitation properties of computational models of unmyelinated peripheral axons. Journal of Neurophysiology, 125(1):86–104, January 2021. URL: http://dx.doi.org/10.1152/jn.00315.2020, doi:10.1152/jn.00315.2020.

[PPG24]

Edgar Peña, Nicole A. Pelot, and Warren M. Grill. Computational models of compound nerve action potentials: efficient filter-based methods to quantify effects of tissue conductivities, conduction distance, and nerve fiber parameters. PLOS Computational Biology, 20(3):e1011833, March 2024. URL: http://dx.doi.org/10.1371/journal.pcbi.1011833, doi:10.1371/journal.pcbi.1011833.

[PP34]

Placeholder Placeholder and Placeholder Placeholder. Placeholder. Journal of Placeholder, 1(1):1–2, January 1234. URL: http://dx.doi.org/10.1234/5678, doi:10.1234/5678.

[RA93]

F. Rattay and M. Aberham. Modeling axon membranes for functional electrical stimulation. IEEE Transactions on Biomedical Engineering, 40(12):1201–1209, 1993. URL: https://doi.org/10.1109/10.250575, doi:10.1109/10.250575.

[SCH+94]

J. H. Schild, J. W. Clark, M. Hay, D. Mendelowitz, M. C. Andresen, and D. L. Kunze. A- and c-type rat nodose sensory neurons: model interpretations of dynamic discharge characteristics. Journal of Neurophysiology, 71(6):2338–2358, June 1994. URL: http://dx.doi.org/10.1152/jn.1994.71.6.2338, doi:10.1152/jn.1994.71.6.2338.

[SK97]

J. H. Schild and D. L. Kunze. Experimental and modeling study of na+current heterogeneity in rat nodose neurons and its impact on neuronal discharge. Journal of Neurophysiology, 78(6):3198–3209, December 1997. URL: http://dx.doi.org/10.1152/jn.1997.78.6.3198, doi:10.1152/jn.1997.78.6.3198.

[SGJ15]

Danielle Sundt, Nikita Gamper, and David B. Jaffe. Spike propagation through the dorsal root ganglia in an unmyelinated sensory neuron: a modeling study. Journal of Neurophysiology, 114(6):3140–3153, December 2015. URL: https://doi.org/10.1152/jn.00226.2015, doi:10.1152/jn.00226.2015.

[TPO+14]

Jenny Tigerholm, Marcus E. Petersson, Otilia Obreja, Angelika Lampert, Richard Carr, Martin Schmelz, and Erik Fransén. Modeling activity-dependent changes of axonal spike conduction in primary afferent c-nociceptors. Journal of Neurophysiology, 111(9):1721–1735, May 2014. URL: https://doi.org/10.1152/jn.00777.2012, doi:10.1152/jn.00777.2012.